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A regular method of solvisg ~e-~~~al dynamic problems of the theory 
of elasticity for wedge-like regions with mixed boundary conditions is given. 
The mixed boundary condftionr mean that a normal disptiement and shear 
stress, or a normal stress and a tangential dfrplacement, are specified at the 
boundery half-planes. The method which generalieea the ruult obtained by 
the author in [I, 21 to the case of .arbitrary mixed bends c~~~~ combines 
the integral ~~~f~~~~ with the separation of the transform ~~~~~ 
of the unknown functions near the edge. 
A survey of the latest achievemeats and development of the methods of solving 
dynamic problems of the theory of elasticity can be found in 133. 

Z. Let an elastic medium with shear modu&s P and velocities of propagation of 
the ~~~~~1 and cave waves denuted by o and b ) respectively, occupy the 

segion T>O,OC o<rs/2, - 0~ ( z c 00 (t, 8, and z are cylindrical 
coordinates), at the boundaries 8 = 0, .7X / I (l/Z < 2, 1 # 1) ofwbichthefollow- 
ing mixed conditiona are specified: 

or the conditions 

where k = o,i, with the indicer zero and unity referring to the bound 
and 8 = 5t / 1 s respectively. The initial coodftfoat are a-rrmmed to be sero: aod 

w=t?w/i%=O when t = tip We denote by W {W, we, w,) tie displace- 

ment vector, and by ulj the compoaents of the stress tensor (i, j = r, 6, z). 
If we express the displacement vector w in terns of the 1ongitudiDal and t-verse 

scalar potentials 9, qr and + to accordance with the formula C4,51 

w = grad ‘p + rot (&eJ + rot rot ($,e,) (I.31 

where es is a unit vector in the direction of the 2 -axis, then the s~lutlor~~ of the 
dynamic problems with bauiary coadttfoas (1. I), ( 1.2) (we shall cell them the first 
and secoDld problem, respe&ively), can be reduced to sol&ions of the S~S tans 11.4) 

and (1.5). respectively 

Acp$$, (j = 1,2) 

988 
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( 1.5) 

w, = w,’ (T, r, z), w, = wzo (T, r, 2) 

(TM = a~“(~, r, 2) (0 = 0) 

w, = wrl (.c, r, z), w, = w,l (z, r, 2) 

um = 0~’ (T, r, 2) (0 = n / 2) 

Cp =*i = 0 (z < z9) 

where T = at, r. = at,, 7 = a / b > i, and A is the three-dimenatonal haplace 
operator. In solving each of the systems (1.4) and (1.5). we must also take into acc- 
ount the conditions at the edge [SJ 

w = c + 0 09, 8 > 0, r --t 0 (C 5 c (T, 2)) (1.6) 

ensuring the integrability of the &uses near the edge and the uniqueness of the solut- 
ions of the above problems. In this manner, the solntion of the first and second probl- 
em is rednced to rolrrtions of the systems (1.4), (1.6) and (1.5), (1.6) respectively. 

2. Let us solve the first problem (1.41, (1.6). We apply two-sided Laplace trans- 
forms in r and 2 to the system (1.4). Then, expressing with the help of (1.3) the 
boundary ccndMons in (1.4) in terms of the longftndfnal and transverse potentials and 
using the equations satisfied by the transverse potentials, we can show that the bound- 
ary conditions for the longitndinal and transverse potentials can be separated. As a 
result, the solntion of the system (1.4) is reduced to solving the following three systems 
for v*, &* and Fz*: 

AIT* = (9” - s2)Tc (A 1 5 a2 I iW + r-la I ar + r “a$ I 332) 

aP* / ae = uO (e = o), aT* 1 ae = 17, (e = n I I) 

gii* = (Y26 - s”)g* 
ql* = Tf, (e = 01, ql* = v, (e = n / 1) 

A&* = (f$ - s2)$* 

@,*/de = wO(e = o), a$,* /ae = w, (e = dz). 

(2.1) 

(2.2) 

(2.3) 

In (2.1) -(2.3) we have 

Uti = W2qm2 [(y%f - s2)dV1, / 09 + Sp-' (&‘)* + (7’Qa - 
p)@+F)*l 
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Vk = (r”$ - syfp-’ (ztkk)* - 2d (auk)* I drl 

WI, = ryesq” [2s (is&* - p-1 @ezk)* + sd’ir, / drl (k = 0, 1) 

Also, the bar and the asterisk accompanying the functions f (f = rp, qt, &, ugrk, 
crezk, u$) in (2.1) -(T&3) denote the corrupondiog Laplace transforms in % and 
2 Of~~~~~ f 

w* = const + O(P), e>O, r-to (2.4) 

a, = + 

n!l 

s T* co9 nlt3 d9 (n = 0,1,2,. . .) 

0 
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b,,, sin rile, b,,, = f 1 &* sin r&Id0 (n = 1,2,3, . . .) 

-1 01 

n/l 
u 

bd = A s pcosnze& (n=O,i,2,...) 
0 

a=($- &?yvr, x = (r"$ - Sly* 

We separate the branches of the functions 0 and X by producing cuts, fn the S- 
plane, from the points s = fq (for X from the points s=fYq )toinfinity 
alongtheraysugs=argqand~gS = sr + arg q+and the branches of the radicals 
0 and x arechosensothat 0 = q and x = m when s = 0. Then it 

caneasilybeshownthat Re@>O and Re x > 0. Solving (2.5) and (2.61, 
we obtain 

where 1, (s) and K, (s) are modified Bessel iimctions of the fint and third 
kind, respectively. 

We assume that the given functions ZC~~, uerk and uetk aresuch that the 
functions f, and f,,i are bounded when r + 00 and the functions rfn and rfn, 

bchavelfke mkst+O(rC), e>O why r+O. 
Using the fcllowing asymptotics of the cylindrical functions: 

and the boundedness of the functions fntand fnj with r+ 00, we can show 
that the functioas F, and F,,, are bounded when r-koo. But in this case, if 
we seek the functions (L, and bw which are also bounded when r + m we And 
from (2.7) and (2.8) at once that B, 3 IIn1 s 0. 

We determine the remaining coefficients A, and C,, using the condition at 

the edge (2.4). We expand the transforms Z,* and Ez*, on the interval 0 < 
O<n/Z,intoacarineseries,and 0 e* into a sine series using the expressions for 
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the components of the ~p~cern~t vector in terms of potentials, accordiag to (1.3). 
Then we multiply the expresdon for the corn-b of &* and 
co9 nl@t# and those of iZii* by 

iii,* by 21n-1 
211~4 sin la&$@ , and fntegrate then with respect 

to 8 from 0 to n / I to obtain, from (2.41, for each I2 (n = 0, 1, 2, . . _), 
the following sys&m of three equations 

f2.91 

su, - x2b,a = const + O(F), e>O, r-t0 
Ill %l -- 

r an--- dr 
- $ b,,, = const + 0 (t-e) 

which yield the coefficients A n and C-1 appearSAg in the r?xprestWa (2.7) and (2.8) 
form a,, and bSj (when n = 0 , the system (2.9) degenerates into a system of 
two equatiuu fur a, and b,, , since bDL = 0; G!.S) utfii~+~ W fact, that rf,~ 
isbamdedas r+O). 

Us&g the asymptotic caotptions ofcyltnddcal fun&ions with S * 0 

(2.10) 

K,(s) = -1ns$0(1>, Kl(S) =s-l-i-O(slns) 

Ka (4 = 1 2°F (a)(2 / s)Q + 2-‘r (-a)(s / 2p f 0 (#““) (0 ( a < 1) 

2-T @)(2 1’@ + 0 (s2-9 (a > 1) 

where I’ {u) it a gamma fimctkm, and the eonstra&b rxnposCd on the behavfor of 
f, and far witi r - 0, we 0bWn the following asymptotic ezpm&aar for 
Fn {r) and F,,j, (r) as r * 0, depending on the value of n: 

F, (r) = con& + 0 (r), Fl (r) = M,r* + 0 (r) ( 2.11) 

5 W = 0 b-1 (a > 21 
Foe (4 = con& + 0 (F), Flj (r) = Mljr’ + 0 (r) 

Fflj (7) = 0 (4 (n ;;I 2) 

su~~~g (2.7) a& (2.8) into (2.9) and utfllxing the asym$‘toMc ~-t@ (2.10) 
and&U), weRad~ttbtcondltionrf2,9fwfn~for n = 0 ad =>2 
PmtidedtlW A,s~i,,~rnO. Whcm n= 1, Wt~ve*Vt~ 

Sr’-l + ZW + 0 (1) = coast + 0 (F) 

XT’ + 0 (9) = const + 0 (*), e > 0, r - 0 
&--‘-1 - Iffi-l + 0 (1) = Cork& + 0 (r”) 
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where 

s = -2q (1 + Z)[A,w-’ - c,,x-2 + SC,PJl 

T = -2-‘-qy (1 - 2) M,w’ + C,,x’ + sC,*x’l + WI 4” K, + 
s&N 

X = 2’-‘r (1) I&w-’ - xw&l 

The above system yields S = 0, T - 0, X = 0, and this gives the following 
expressions for A,, Cl1 and Cl, : 

we note that for Is> 1 the formulas (2.13) yield Al = Cl1 = Clll = 0. 
Thus the solution of the f&at problem (1.41, (1.6) in terms of the transforms has 

the following form (Vs < I, I + 1) : 

-* 
cp = +-Fe(r)+ j&)coan~Q” f-l - cl+ CQS zer!& (ro) c,, 

(2.14) 

-1 

where the expressMs for p, (r) and &,J (r) are given in (2, ‘7) and (2.81, and 
the quantity c,, b(2. TTO. 

We obtain the solution of the second problem (1.5)‘ (1.6) in the same manner. 
In this case we apply Laplace ~~~~~~0~ in t and 2 to (1.51, and separate the 
boundary coi[tditiam for the potentW.s cp, 9, and 9% to r&uce the system (l. 5) to 
sohttion of the following systems for the potentials: 

up = 2y*q-’ [+-(if&j)* + s(iFsk)* + -$. {fi$k)‘] 
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vk” =,- (ii$~*-+~k”-+$~k”] [ 
WkO = (8 - vpqy f(q)* - d&‘l (k = 0, 1) 

Further expanding $* and &* ontlmsegmc3lt 0\<9<n/1 into a&e 
se&s aad ql* into a co&e series, we solve the system (2.15) --@?. 17), with cendit- 
ions (2.4) taken frh accmmt, in exactly the same manner as the Ant pmbiecm. As a 
result, thr? ~lutitva of the ttcQ)xf jmbim < 1.5), (I. 6), in termt of the tms&mns, 
hasthef~mtigfmrl (I>‘/,, Z#f): 

The expacnfanr for p,,O (r) and F,,J” (r) are given by the last fasnollor of (2.7) 
and (2,8), the qua&tits Ml0 and MI,’ are given in (2.12). We zmst aho mplwe 
evaywkre the fimcthm fn (r) 4 fnr (r) by f,,’ (r) ad ft~* @) wtkcte 

fnO (r) = -21*nn-+-a [U 0” - (- I)Y7,“1 

f?axO (r) = 2i!n-‘r-8 rv,* - (-l)“YJ 

fnaO (3 = -2hi4r-4 [W o 0 - (-l)WJ 
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w = grad cp + rot @es) 

are obtained for the first and second problem fkom the systems (1.41, (1,5X by putting 

Qfkkl w,“, 9s and all derivaUves with respect to z equal ts, zero, aad I# SEE 9%. 
AS a result, we obtain the soluUans of the filet and second problem w&h, as their 
farm implies, can be formally derived from{ 2.14) and (2,181 by replacing in the latter 
formulas (I&j*)+ * @,“)*, (6zk)*, (Sk)*, (Cee’c)*, (@zk)* by @,$ Fe’, 
0, ii7,k, ijwk, 0; reap_Uvely, pas&g to tbe limit as s -+ 0 and putting q s 
lim ‘iji* and 3 = lim qr* as 8+-O. 

‘lhus the sotution of the plane dynamic problem wfth zero initial eonditfcns ( at 
‘t = ze) and with boundary ccnditionr 

have, in tumr of the lraadomrt, the form (1 > 1/S, I# 1) 

W? = w*O (7, r), a@ = u#@O (7, r) (e = 0) 

ur, = wr’ b, r)* see = tree’ (z, r) (@ = 1T I 1) 

and WAial ctiw at z = z, arezero, the soiution of the pmbkm can be w&t- 

mfnthef=m (J>l/s, l+i) 

( 2.20) 

i = -&F,,“(r) + $);1 (r)coanlff - c*y%~ (ryq)cca 20 
n-1 

C= 2’+’ sin ntf (f + 1) (WI0 - iw,,q 

rrqlu+ P, 
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The functions F, and & and the quantftie~ Ml and Ml1 in (2.19) have 
the same form as in C&7), (2*8) and (2.12), provided that o is replaced by q and x 

bY YC? * and 

ti fmaas mitten for F,,, Fnlp Ml and MU remain valid for F,“, F,,“,M,” 
and MIzo provided that fn and fnl are nplacad by j,,’ and jnro and 

j*;” (r) = - 2t’nx-~r-~[U*” - (- i)%U,“] 

j;, (r) = 21n’‘r-2 [VoO - (-- 1)” v,*j 

Finally, the originals of the solutfoar (2.19) and (2.20) am w&ten in the form 

for the first problem, and 
2 

(ii&k)* Es 
xl 

d,prf + t?(@+*), (S&k) * = ii,” + d,*r + 0 (rf*“) ( 2,221 
j=Q 
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for the second problem, with dj and dr (j = O-6) independent of f. 
Indeed, for the first problem the uncap rfn and rfnt are in thts case bound- 

ed, and the function rfnl ==U (r-I),, its order exceeds the admissible value. Then, 
d~fer~~a~g in 8 the equations for iii+, g* and j&* appearing in the systems 
(2.1) -f2,3), reducing the boundary condition for $1* to the form 

*1* I --RF- &0,x/1=- 

+ TWVk 

with help of the equation for qi* and finally wrfting 

we arrive at systems& 15) -42.17) for the second probIcm in terms of the potentials ._ 
$I+, $I* aad %P*, the functions rfn’ and rfnj” for this probkm being al- 

rrtady bumded when r -+ 0. 

Similarly, in the second probIem we find that rj,,rO is bounded and the functions 
rfnO and rfnao are of order 0 (r-1) when r+0. Inthiscasewecanuae 

exactly the same procedure to reduce the sohMos1 of &e-second probkm to the soIut- 
ion of tie systams (2.1) --(2.3) for the flirt problem (in terms of the potentiala$,:$,* 
and &*) provided that we write 

+ z a+ f aa, q&* ,= a$,* / ae, -$&&&* / be 

The f&&ions rfn and tfnf for thesesystems are aIruady bounded when I- 0. 
NatoraIIy, theestimates (2.21) and (2.22) and the above example of reducing one prob- 
lem to the other, remain aII valid in the case of plane strain (with the LapIace trans- 
formin 2 abaentinthtscase). 

We note that the cases I = l/s and 1 = 1 which were excluded from the 
discuss&& foIIow from the results obtained in the, limit as I -c r/s and J -+ 1. 

If different mixed ccudfticns are speciffed at the boundaries e = 0, n / 1 

=‘a = we” (t, r, z), Q&. = O&” (t, f, 2) C2!23) 

c%Q = (T@zO (& r, 2) (e = 0) 

ur, = wr’ (t, r, z), w, = w,’ (t, r, 2) 

%a = a& (t, r, 2) (e = x f 1) 
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then the sokttfon of the n~~U~~ dynamic problem with conditions (2.33) can be 
rep-ted by a suparpwftfon of the rcihtti~nr of the first and m problem d&us- 
ed above. Indeed, the &&ion of the problem in question can be written as a sum of 
the sokations of the problemr with conditions (2.24) and (2.25) 

Ure =o, ug,= 0, U& = 0 (0 = 0) (2.24) 

UT, = “*’ (t, r, e), wz = w*l (t, r, 2) 
o&J = creel (L, r, a) (9 = II / I) 

wg = we0 @c 7, z), %r = %rO Q, r, 2) (2.25) 
oez = a&” (f, r, 2) (0 = 0) 

WT =o, w, =o, t3@j = 0 (0 =I xf I) 

The above method of wlvingthethre+ dimen&M~~~~tatiomuydyaPwScproble~ 
remaim valid in the csse of statiosezy prublcmr, provided that we replace, in the 
abovefcnzUas, q by ik+s(Imk=O,e>O) ~dp~~~e~t~~ 

p + 0. fnconc&&nweaobt, ~t~au~u~~~e~~~~ 
and obtaiu the exact an&lyt& 8okltiaU of the prortG oad 
of diffract& of e&&z, cylfndricrl and sphedcal wavtt on a 
hi_ =gle t1,21. 

3. Letu3caxyor;lta ckecktoseewketkertke 
flxth*;pc3tmm~ am 0ft.b 

pmblemit .is sufficienttoshowtftrttkeaeriescrpoaylonrfor~~l- 
Tj*, $1* and $,a given in (2.14) sathfy the correq-ding system (2.1) , (2.2) and 

(2.3). 
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F~twe~~ow~tw~ 0++0 and 0*xiI--0, tktl the boundary 
coxx&tions specified in the systems (2. Q -(2.3) hold, We can write the exprdon 
given in (2.l4) for dl* in the form 

wecanahowthatthetermsofthe8tdcrfaP Enlo decreaseexponentiallyar R--,oo) 
and it follow8 that 8 ruier ccmtulfllg l&a convergu uniformly in 8 ez IO, x / I]. 
Ncxtweprrrtothcthemituodwtherummatiandgnas e-*+0 and e+ nl 
t- 0, mdfindtbttbisseri~ ~w~&a~e~~(3*~~d~~ton C,, both 

%%aishfnthtsimit. 
Itnm&utoinqecttheumitofthcacriercaMning &I1 as 3-3-O and 

8+nll-0. Rp&nding the exprewioa 8,~ (z) = -2cVn IV, (z) - (-i)” 
V, (z)] near the point x = r into a Tay&r acries and uslug the asymptotks (3.2) we 
find that 

(3.3) 

when e--P+0 and e-en/r- 0 , the tories for S remains the only cxprerdon 
yielding nanzero value% We trrrnrform tbfs cxprtion into 
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S 
vo (4 s VX (r) =. 

ni 
sinv(n-W dv+.t 

v sm VET 
0 s sinvle dv 

v 
. 

Hue the contour lo (extending from +ca - ie to + 00 + Se) 1 forms a loop 
around the Interval Ii, i- 00) 
vo < i). 

and intersects the real axis at the point vo (0 < 

Deforming the contcur IO into the imaginary axir going around the pole v = o 

and taking into account the fact that the i&grand fkmctfcas are odd, we finally obtain 

s = v, (r) v + Vl k) + 

whichrhowsthatwhen e++o and 0+n/l-- o , then the fun&M &* 
arruma the presc&ed boundary values 

ql* E= vo (6 = O), ‘;i;,* = v, (9 = n / I) 

In the same nxmuer we find that the exprsllions a? / de and 8&* / 86 satisfy 
the boundary conditiuoa q&fled in q&ems (2.1) and (2.31, respectively (dlffemntia- 
tioatithreapectto 6 ofthesedu i$* and 
by the fact that the re&tlag serla in partial dedvHlv& co~plfcbgc: u 
for 8 E Ie, R / 1 - El, B > 0). 

We shall show now that VP*,&* and @) given by (2.4) satiafy tire d&reMial 
equations in systems (2. l), (2.2) and (2.3), respectively. The &es “j* (wUa@t 
the additional term coM&ng C, whfch abvtawrtly satHl@8 the w (A, -x7 
-0 
(91 =0) canbewritten, withhelpoftheW&un &a&&mat&n. lnthefurmofa 

cc&our integral 

The contour II panes from the region Im v < 0 to the region Im v > 0 inter- 

secting the interval (0, i) and follows the rays arg v =*a(O<a<n/2) as 
[VI-=. 

In writing the expression (3.4) we used the estimate E, = 0 (v-l) with Re v 

- + 00,. The estimte cm be abtabd ustag the arympfetlcs (3.2). As a result, the 

integrand fbnctioru in (3.4) decrease exponentially in v as I v I - CCI along I, , 
for 0 e (0, rt / I) , Then, applying to &+ the differential oparator (A1 - ~8) s 

a* 1 a? + r-‘a 1 ar f ?-‘a* / a@ - ~2. we can place it under the integral atgna. 
Remembering also tbat 
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(3s / bra + j--Q? j dr - vpPrwa - Xa) E, (r, X, V) = -r-W (r) 

we find 
(A, - ;rz) &“’ = - 

Since the integrand expressions are odd functions of v s we can deform the cont- 
our .z, into the imaginary axis to find that the i&grab vanish and (A,-%*)~,+ = 0, 

Q.&D. 
Similarly we can wrfte the series for C* (as well as for 3;p* ) of (2,141 in the 

form 

As a result, applying the operator (A, - 0%) to 7p* and taking into account 
(3.5) and the fact that (A, - o’)F, / 2 = f* / 2 = tn’*r* [ .!I@ (r) - U, (r)], we 
find the followfng expression for any 9 form the interval (0, n / I): 

lUl @I 
nrrf 

s 

CQS de 
sindv 

= 

I 

cos de 
Gdv=O 

since the in&grand functi~ are odd in v. An oblique stroke intecDtct.ing the inte- 
gral sign Wiicates that, during the integration along the imaginary axts, it stands for 
its princtpal Caucby value. 

In the same manner we can show that in the case of t&second problem theurprert- 
ions (2.18) are solutions of systems (2.15) -( 2.17). 
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