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A regular method of solving three-dimernsional dynamic problems of the theory
of elasticity for wedge-like regions with mixed boundary conditions is given.
The mixed boundary conditions mean that a normal displacement and shear
stress, or a normal stress and a tangential displacement, are specified at the
boundary half-planes. The method which generalizes the result obtained by
the author in [1, 2] to the case of arbitrary mixed boundary conditions combines
the integral transformations with the separation of the transform singularities

of the unknown functions near the edge.

A survey of the latest achievements and development of the methads of solving
dynamic problems of the theory of elasticity can be found in [3].

1. Let an elastic medium with shear modulus 4 and velocities of propagation of
the longitudinal and transverse waves denoted by ¢ and b, respectively, occupy the
region ' >0,0<< /1, —o0<z<o0(r,0, and z arecylindrical
coordinates), at the boundaries 0 = 0, n /I (/, << !, | = 1) ofwhichthe follow-
ing mixed conditions are specified:

we = wg* (¢, 1, 2), ¢ = G,  (t, 1, 7), Og = OgF {t, r, z) (1,1)
or the conditions
we =w* (t,r,2), w,=wr(tr, z), Ogg = Tgs*(t, Iy 2) (1.2)

where %k = Q, 1, with the indices zero and unity referring to the boundaries 8 = 0
and O = 5/ , respectively, The initial conditions are assumed to be zero; and
W=0w/9t =0 when =1, Wedenoteby W {w, ws w,} the displace-
ment vector, and by 0;; the components of the stress tensor (i, j=r,0, z).
If we express the displacement vector w in terms of the longitudinal and transverse
scalar potentials @, Y; and Y, in accordance with the formula [4, 5]

w == grad ¢ -+ rot ({,es) + rot rot (Pse,) (1.3

where €3 is a unit vector in the direction of the 2 -axis, then the solutions of the
dynamic problems with boundary conditions (1. 1), (1.2) (we shall call them the first
and second problem, respectively), can be reduced to solutions of the systems (1.4)
and {1, 5), respectively
%, .
A‘P”W; A‘Pz‘z’\’z‘g;g" (12172) (1. 4)
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Solution of dynamic problems of the theory of elasticity 989

wg = wq’ (T, 7,2), g = G¢,° (T, T, 2)
Ogz = 0'9;0 (T, r, z) 6 = O)

we = we' (T, 7,3), Og = Gg (T, 7, 2)
Co: = 0g! (1, 7,2) @B =m/])
ep=¢9;=0 (t<<To)

D 0%, ,

w,=wS (v, r,2), w,=w,(t,r,2)
Ogg = Ogg" (T, 7, 2) (8 =0)
w,=w!{trz, w=w'(r 2
Ogg = Cag* (T, 1, 2) O =am/1l)
e=9;=0 (<7

where T = at, T, = at,, ¥ = a /b > 1,and A is the three-dimensional Laplace
operator, In solving each of the systems (1.4) and (1.5), we must also take into acc-
ount the conditions at the edge [6]

w=C+0(), 6>0, r>0 (C=C/r, 2) (1.6)

ensuring the integrability of the stresses near the edge and the uniqueness of the solut-
ions of the above problems. In this manner, the solution of the first and second probl-
em is reduced to solutions of the systems (1.4), (1.6) and (1.5), (1. 6) respectively,

2. Let us solve the first problem (1.4), (1.6). We apply two-sided Laplace trans-
forms in T and z to the system (1.4). Then, expressing with the help of (1. 3) the
boundary conditions in (1.4) in terms of the longitudinal and transverse potentials and
using the equations satisfied by the transverse potentials, we can show that the bound-
ary conditions for the longitudinal and transverse potentials can be separated, As a
result, the solution of the system (1.4) is reduced to solving the following three systems
for T*, ¢,* and ,*:

AD* = (@ —s)P* (A, =0/ +r29/ar+r2?/a0Y) (2.1
0F* /90 =U, 0=0), 0o9*/00=U, O=mn/l)

élEl* = (v°¢* — Sz)E_l_* (2.2)
W =TVe0=0), pw*=V, @==n/l)
Ape* = (V¢ — " (2.3)

Mp* /00 = Wo (0 =0), dp*/0=W, 0=mn/l.

In (2, 1) —(2.3) we have

Ui = g [(y'g — S)dVi/ dr + sp™ Gol)® + (1°¢* —
26%) ()]



990 V.B. Pomchikov

= (1°¢ — #)Hu™? (Go")* — 2d (We")* / dr)
Wi = ry?q™ [2s (@)* — n™* (Ge)* + sdVi /drl (k= 0, 1)

A“ko, the bar and the asterisk accompanying the functions f (f = @, ,, s, 04,F,
0o, wg¥) in(2.1) —(2.3) denote the corresponding Laplace transforms in T and
z of the function f

f=ewtar, o= ewfa
Here Reg >0 and Res =0 gince fER)=0 when T<{T,, and we
asume that  |f| << Mot as 7T-—> --co and the function |7| is integrable

in z . Further, assuming that the estimate (1. 6) remains valid after the application
of the Laplace transforms in © and 2, we obtain

=const + O (r®), e>0, r—=90 (2.9)

with the estimate (2. 4) assumed to hoid uniformly in 9.

Thus the solution of the first problem (1.4), (1.6) reduces to the solution of the
system (2,1) —(2.4). The form of the system indicates that the longitudinal potent-
fal P* and transvemse potentials P,* and P,* can be sought independently of
each other as long as the condition (2.4) at the edge is not taken into account. In
solving the svstems (2,1) —(2.3) we expand, on the segment 0 O n/ L, the
functions $* (g, r, 6, 5) and §,* (g, 7, 0, 3) into the cosine series, and P1* (g,

r, 0, s)into a sine series.

We obtain the equations for the coefficients of the above expansions by muitiply-
ing the equations for P* and ¥,* from(2.1) and (2.3) by 2In~! cos nidd8, and
the equation for §,* from(2.2) by 2! sin nl0d8., and integmting with respect
to O from O to x/l  This yields the following second order ardinary differential
equations:

Lan = @%an+ o (r) (L=d*/dr*+ r'd/dr — nPr%) (2.5
f.u (F) == 213‘-17.2 IUO — (—*i)nUII

Lbny = %*bpy + fny 1) (1= 1,2) (2.6)
faa (r) = =2Pnnr2 [V, — (—)"V,], fn (r) =

2Un7rt (W, — (—1)"W,]
=2 4 a,cosnl@,

LAY

I‘l
5 F*cosnledd (n=0,1,2,...)
[}

n

alw
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oo n/l
\Fl*:mesinnle, by = = S\pl*smnlede (n=1,2,3,...)
Nl 0}

- b, =
$,* = —2 + Y by cosnlb,
Y

n/l
=.% S P.*cosnlfdd (n=0,1,2,...)

0 =@ — % x= (g — "

o

We separate the branches of the functions @ and % by producing cuts, in the s-
plane, from the points s = 4=¢ (for % from the points s = X yg¢ ) to infinity
along the rays arg s= arg g andarg s = -} arg gsand the branches of the radicals

@ and % are chosensothat ® = ¢ and % = 9 when §=0. Thenit
can easily be shown that Re @ >> 0 and Re x > 0. Solving (2, 5) and (2. 6),
we obtain

= A Ky, (ro) + B.I,, (ro) 4+ F, (r) 2.7

Fo(r)=—Kn (rw)S w1 (20) fn(2) 2 dz — [y (rm)S nt (20) fol2) 2 d2
bnj = CnjKn; () + Dojlyy (rx) + Foy (r) (2.8)

Fpi(r) = — Ky, (m)S nt (@) fuf(2) 2dz — I, (m)SK,., (%) foj (2) 2 d

where I (s) and K, (s) are modified Bessel functions of the first and third
kind, respectively,

We assume that the given functions ug, 64,¥ and ¢, are such that the
functions f, and fn; are bounded when r— oo and the functions rf, and rf,;
behave like const + O (r®), ¢ >0 when r— 0.

Using the fcllowing asymptotics of the cylindrical functions:

Ka(s)~]/-—e-s, [a(s)~-V—-;_;;e*. |s}— oo, |args|<-;—

and the boundedness of the functions f,\and f,; with r — oo, we can show
that the functions Fn and F,; are bounded when  r — oo . But in this case, if
we seek the functions @, and bn; which are also bounded when r — oo we find
from (2, 7) and (2. 8) at once that B, = D,; = 0.

We determine the remaining coefficients A, and C,; using the condition at
the edge (2.4). We expand the transforms w,* and %,*, on the interval 0 <
8 L n/l, into a cosine series, and y* into a sine series using the expressions for
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the components of the displacement vector in terms of potentials, according to(1.3),
Then we multiply the expression for the components of ,* and #,* by 2igt
cos nl0df and those of @e* by 2In~'sin nl@d6 , and integrate then with respect
to 8 from Q to n /[ toobtain, from(2.4), foreach n(n =20, 1,2,...),
the following system of three equations:

da nl db
T;‘- + —=bu + s—d—:f-?- = ¢onst + O (r¢)
sa,, — %%bps = const + O(re), >0, r—0

nl db_, snl
—-—;—an—- —d;_ —-;—bn2=consb+0(r3)

2.9

which yield the coefficients A, and C,; appearng in the expressions (2, 7) and (2.8)
forom a, and },; (when n = 0, the system (2, 9) degenerates into a system of
two equations for a, and  b,, , since b, = 0; (2.9) utilizes the fact that rf,,
is bounded as r — 0).

Using the asymptotic expansions of cylindrical functions with s — 0

i 5\
Iy (s) = m (T) + 0 (s¥%) {(2.10)

Ki(s) =—Ins+0(1), K;(s) =s1+0O(slns)
K, () = {2“1' @)2/8)*+ 27T (—a)(s /2 + 0 (%) D<a<1)
* 2T (@)@ 15>+ 0 (%) (@>1)
where I (@) is a gamma function, and the constraints imposed on the behavior of

fn and fny with 17— 0, we obtain the following asymptotic expressions for
Fo(r) and Fpn;(r) as r— 0, depending on the value of n:

Fo(r) =const + O (r), F,(r) = M;?* + O (r) (2.11)
F,=0(0) (n>2)

Foa (r) = const + O (r), Fy;(r) = Mli’"! + 0@

Foyy()=0() (n>2)

My = ~(-§’-)’T51;T)§K, @) fi()zdr (1<1), My=0 (I>1) (2.12)

My = — (%")ET'(T%‘-{—"':TSO Ky (zx) fri (@) zdz (1 <1), My; =0 (I>1)

Substituting (2. 7) and (2. 8) into (2. 9) and utilizing the asymptotic estimates (2. 10)
and (2.11), we find that the conditions (2.9) will hold for 7 = Q0 and n>2
provided that A, == C,; = 0. When n =1, wehave the system

Sri=t 4+ Tr'-t + O (1) = const + O (r9
Xr' 4+ O0@) =const +0(r®), e>0, r—>0
Sr-t — Tri-t + O (1) = const + O (%)
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where

S = —2HT (1 + D407t — Cyyn-t + sCyex-i]
T = —2-HT (1 — ) [4,0" + Cpx' + sCyox'l + (M + M), +
sMi,)l
X = 2T (1) [4;507 — %*-1C,,]
The above system vields S = 0, T = 0, X = 0, and this gives the following
expressions for A,, Cy; and Cy,:

4, = “}lxzpis-lcxz' Cn = g% 'Cya (2.13)
Cin = 2"lsin 7Il (1 + 1) s (M, ++ My, -+ sMy0)
® n [0 T (2 )]

we note that for [>>1  the formulas (2,13) yield 4; = Cy; = C;, = 0.
Thus the solution of the first problem (1. 4), (1.6) in terms of the trangforms has

the following form (Vs <<1I, 15 1) :

. had a-1
= 3 Fo)+ Y Faycosnld + X ofcos 10K, (ra)Cyy  (* 19
=1
%12 = Y Fua () sinnld 4+ 2L sin 16K, () Cra
Rz}

Fa* =7 Foa (1) + Y Fus () co8nl +- cos 18K, (rx) Cas
Ne=]

where the expressions for Fy, (r) and F,; (r) are given in(2,7) and (2.8), and

the quantity C,, in(2.13).
We obtain the solution of the second problem (1,5}, (1. 6) in the same manner,

In this case we apply Laplace transformations in T and z to (1.5), and separate the
boundary conditions for the potentials @, §; and ¢, to reduce the system (1. 5) to
solution of the following systems for the potentials:

LAT*=(@—T T =US"(08=0), T*=U" 8=n/Dd (219
Ap* = (v’¢® — ) 4, * (2.16)
/0 =V, 0=0), dp,*/8=V," @==x/D

Azﬁz* = (y’¢* — &%) '-’52*

- . ~ o 217
Bt =W (0=0), Br*=W> @=a/) (240
where

U° = 21"‘29”[ 2; (Gho)* + s (B,5)* + —;;- (w,_*):]
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Ve =r[@ = v —ewi]
W = (s — v*¢)1 [([@)* — sUx’] (k= 0,1)

Further, expanding P* and ,* on thesegment 0 < 8 </ into a sine
series and P,* into a cosine series, we solve the system (2. 15) —(2. 17), with condit-
ions (2, 4) taken into account, in exactly the same manner as the fint problem. Asa
result, the solution of the second problem (1.5), (1.6), in terms of the transforms,
has the f>llowing form (1> Y,, 15 1):

bt 2~1
§* =) Fu’(r)sinnld + X — o' sin 10K, (re) Cus® (2.18)
n=1
- ° - ? g2 o
Pi* = '%"Fol(") + ZF"‘(?) cos nid — _v_‘g_ cos 10K, (rx) Ca
Nl
Tt = 2 Frg (r) sin ni@ + sin 10K, (%) C1s°
n==y
£ 22 sin il (1 4 1) 8 (M,° — My® + sMyy”)
12 -

[ 4« (s vag7)]

The expressions for F.° (r) and F,,° () are given by the last formulas of (2.7)
and (2.8), the quantities M,° and M,,° are given in(2,12). We must also replace
everywhere the functions fn (7) and fu; (*) by f,.°(r) and fos° (r) where

fa° (1) = =2Bna-tr-2 [U° — (— 1)"U,°]
Im® () = 2In-r23[V,° — (—1)"V,°}
fa® (1) = —2Pnan-1r~2 [W,° — (—1)»W,°]

Finally, we obtain the solutions of the first and second problem in terms of the potent~
ials by finding the originals of the expressions (2, 14) and (2. 18) in accordance with the
formulas

codioo ioo

Q= -(-5-“%2— S ev*dg S Fre* ds,
b dm
\bjs-zgii)—*- S ﬂ‘dq S \b,‘e“ds (Co>0)
co—ioe -G

In the case of plane deformation we find that the functions Gg:* = 0 and
w, = fn  systems(1.4) and (1.5), and the remaining specified functions
ws¥, 0y*, WX, 0a* areindependent of z. Expressions for the potentials

¢ (t, r, 0), ¥ (, r, §), connected to the displacements vector by the formula
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w = grad @ + rot (Pes)

are obtained for the first and second problem from the systems (1. 4), (1, 5) by putting

oo, w,¥, P, and all derivatives with respect to 2 equal to zero, and P = ;.
As a result, we obtain the solutions of the first and second problem which, as thefr
form implies, can be formally derived from(2,14)and (2, 18) by replacing in the latter
formulas  (Bh)*, (Gar")*, (Ga)*, (@)%, @), (BF)* by Bk, T*,

0, Bk, G, 0 respectively, passing to the limit as s—- 0 and putting § =

lim* and 9 = lim$,* a8 50,

Thus the solution of the plane dynamic problem with zero initial conditions ( at
T = 1,) and with boundary conditions

we = wy (T, 1), G = 0Gp, (r,7) (0 =0)
wy = wy' (1, 7), O =g (T, 7) (0 ==n/1)

have, in terms of the transforms, the form (1> /,, 13- 1)

§=-5Fol) + 21&‘,‘ () cos nl8 + CK,, (rg) cos I8 (2.19)
N}

= 2 F o1 (F)sinnl® + CYK, (ryqg) sin 18
na)

21 in il (1 + 1) (My + My,)

C=
ag' (1 + %)

When the boundary conditions are

wr=wr°(71r)’ 00820806("”) (0==0)
w, = w! (1,7), Ogs = Ogg' (v,vr) O=n/l

and initial conditions at <t = T, arezero, the solution of the problem can be writt-
en in the form (z>1/,, £ 1)

= Z F.°(r)sinnl6 + C°K, (rq) sin 10 (2. 20)

n=}

1 o - °
o Fu’ () + Y, Fas () cos nld — C¥'K, () cos 10
n=)

V=
Cco— 22 sin 0 (1 4 1) (M° — M,,°)
ng' (1 4+ )
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The functions #, and F,; and the quantities M, and M, in(2.19) have
the same form as in (2. 7), (2.8) and (2.12), provided that © is replaced by ¢ and %
by v¢, and

In (1) = 2ln-1r2 [Uy — (— 1)2U,],
f (r) = =2Bra-1r-2 [V — (— 1)nV,]

yig? art ~ udr

=K o K
_ 1 (5e _..gd“’e)
= (25

The formulas written for Fpn, Fny, M, and My, remain valid for F,°, F,.°.M,°
and M,,° provided that f and f,, arereplacedby f,° and fny® and

122 () = — 28R (U — (— 1) Uy]
f:n (") = 2l 2 [Vo® — (___ 1"V,

o 1 sk d"ﬂak

dahy 42 d‘%‘,k)

© . pip K r (
Vi = rig,* —
k T pdr art

Yiq’
Finally, the originals of the solutions (2, 19) and (2. 20) are written in the form

1 Cyfioo eytico
9= 37 S Pertdg, Y= 2m S Pe®dg (¢ >0)
Ca—10 Co— 100

It must be remembered that in the course of solving the above problems of the
dynamic theory of elasticity we required that the functions 7fn, ITnsy 7fa’ and rfy;°
be bounded when r—»Q . To satisfy these requirements it is sufficient that the
functions, specified at the boundary, have the following asymptotic expansions as
r—0:

2
@h)* = Y dy’ + 0™, (@) =ds+dr+0(H) (22D

=0

@) =dy + 0 (%), >0

for the first problem, and
2
@) =Y dir 00, @M =d° +dTHOC) (509
=0
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@oe®)* = d° + dr + 0 (F+), >0

for the second problem, with d; and d;° (j = 0—6) independent of r.

Indeed, for the first problem the functions rfn and rfy, are in this case bound-
ed, and the function  rfy; =0 (+™1),. its order exceeds the admissible value, Then,
differentiating in 6 the equations for §*, §,* and ,* appearing in the systems
(2.1) —(2.3), reducing the boundary condition for ,* to the form

ials [r‘;r ( e )"”‘q‘ ” =0, 1

dv
- 7‘1; (r "'——"drk ) 4 r3n2V,
with help of the equation for ,* and finally writing

To* = 00% /96, ¥yy* = 09, / 09, $uy* = 9" / 98
[ p—— . g = d dl’k‘) 3|
U; =Uk’ Wk =Wk s Vk F— ey ed P J'“;Z;_"‘ +f’ka

we arrive at systems (2, 15) —(2, 17) for the second problem in terms of the potentials
¥i*, Pu® and V¥au*, the functions rfa° and rf,;° for this problem being al~
ready bounded when r - 0.
Similarly, in the second problem we find that rfn,° is bounded and the functions
rin® and rf.° areof order O(r!) when r — 0. In this case we canuse
exactly the same procedure to reduce the solution of the-second problem to the solut-

ion of the systems (2. 1) —(2. 3) for the fimst problem (in terms of the potentials®,* \pu
and ,,*) provided that we write

PR=OQ* /00, Ty oYy */00, Va*=00s*/ 90

d db’k
Uk—"'r ar 'x“‘rz(!)U VkaVk"
d de"
WiS—rg\T—F )+,

The functions rf» and rfn; for these systems are already bounded when r — 0.
Naturally, the estimates (2, 21) and (2. 22) and the above example of reducing one prob-
lem to the other, remain all valid in the case of plane strain (with the Laplace trans-
form in :z absent in this case),

We note that thecases [ =1/, and [ =1 which were excluded from the
discussion, follow from the results obtained in the imitas [—1/; and [—1.
If different mixed conditions are specified at the boundaries 0 = 0, /]

we = wy° (t, T, 2), Ogr = Ogr” (t, r, 2) (2.28)
Opz == Ggs” (£, 7, 2) (8 = 0)

w, =w!{trz, w,=w!r?z)

Opg = Ogo* (£, 7,2) (B==mn/1
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then the solution of the nonstationary dynamic problem with conditions (2. 13) can be
represented by a superposition of the solutions of the first and second problem discuss-
ed above, Indeed, the solution of the problem in question can be written as a sum of
the solutions of the problems with conditions (2, 24) and (2, 25)

wg =0, 0pr =0, 0, =0 (8 =0) (2.24)
we=w(t,r,2), w,=wl(,r,z)
Opp = 0o’ (t,7,2) (B==n/)

we=wg (t,7,2), Op = G (t, T,2) (2.25)
Oo: = Gz’ (£, 7,2) (8 = 0)
w =0, w;=0, 6g=0 B=n/)

But, according to the formulas for Uy, Vy and Wy, the zero boundary con-
ditions in (2.24)at 0 = 0 yield 9 /30 = ¢, = dp, / 30 = 0 (8 = 0)
and (2, 25) gives, with help of the formulas for [/,°, V,° and W,% ¢ = o, /
00 =9, =0 (8 = n/l). Inthiscase, extending the potentials ¢ and P,
across the boundary @ = 0 in the problem with condfticns (2, 24) in the even maaner
and the potential v, in the odd manner, we obtain the second problem for the region
|0 L/l

w,=wl(t,rz), w,=wlroz)
O = Ogg’ (£, 7, 2) (B=Hn/))

Similarly, extending across the boundary 6 = xn /! the potentials ¢ and ¢,
in the odd manner and 1, in the even mannes, we reduce the problem with boundary
condition (2, 25) to the first problem for the region 0 << 0 < 2n /!

wy = wy’ (£, 1,2), Ggr = g (£, T, 2)
092 == 0’9;0 (t, r, z) (9 = 0, 2“ ll l)

The above method of solving the three-dimensional nonstationary dynamic problems
remaijns valid in the case of statiopary problems, provided that we replace, in the
above formulas, ¢ by ik + e(Im &k = 0, 2> 0) and pass to the limit with

g — 0. In conclusion we note, that the author used the above method to study
and obtain the exact analytic solutions of the plane and three-dimensional probiems
of diffraction of elastic, cylindrical and spherical waves on a smooth rigid wedge of
arbitrary angle [1, 2]

3, Letuscamy out a direct check to see whether the expremions obtained above
for the potentials, are solutions of the problems formulated. In the case of the first
problem it is sufficient to show that the series expressions for the potential transforms

$*, $,* and §,* given in (2,14) satisfy the corresponding systems (2.1), (2.2) and
(2. 3).
We shall assume that the functions Uy, ¥ and W) are piecewise smooth,
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First we shall show thatwhen 6 — 40 and 6 —=n /7 — ¢ , then the boundary
conditions specified in the systems (2. 1) —(2.3) hold. We can write the expression
given in (2J4) for ¥,* in the form

2 = -]
T =T siniok, () + Z(Em" + E,,1) sin ni0 (.2
r—=e it e
By’ ==Ky § L@@z de—1,00 § K @01, @) eds
0 e

‘r

Byl ==Ky 1, @01y (2)zdz —
r~g
r4-g

I,,(r%) S Ky (a0 (2)zdz  (e>0)

T
Using now the asymptotics

K {im)I () — (/) /(2¥), Rev—+ oo 3.2

we can show that the terms of the series for E,,° decrease exponentially as n — oo,
and it follows that a series containing E,,° converges uniformly in 0 = [0, =/ 7).
Next we pass to the limit under the summation signas 6 — +0 and 6 — =xn/
! — 0, and find that this series, as well as the term in (3, 1) dependent on (,, both
vanish in the limit,
It remains to inspect the limit of the series containing En,' as 6 — 4 0 and
6 —-n/l—0 . Expanding the expression %n; (z) = —2n71Bn [V, (z) — (—1)®
V; (2)] near the point x = r into a Taylor series and using the asymptotics (3. 2) we

find that
28 [ tas Tz
'n z \nt dz AR z
E,‘;;""‘,T[S(T) ";'+S(';') T]X
r

r—e

Vo —(=1"Vs(r) 2
2nl nn
as an-— oo , This yields
ZE},,(r)sinnza=s [1+o(-,17)] (3.3)
Naz}

2 TV sinnlf
s = Y R W) — — 0"V

Nax}

When 6 —» 4+ 0 and 0 .—~n/!-— 0 , the series for S remains the only expression
yielding nonzero values, We transform this expression into
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S =

Vo(r) S sinv (3':—- 0) dv 4 Vi(r) $ six} i dv
ni v Sin vi ni v sin vn
L] : ]

Here the contour !/, (extending from oo —ig to - co--ig) ) forms a loop
arouzdit)he interval [1, + oo) and intersects the real axis at the point v, (0 <C
Vo .
Deforming the contour !, into the imaginary axis going around the pole v = ¢
and taking into account the fact that the integrand functions are odd, we finally obtain

10 )
S =V,(r) +V)
which shows that when 6 — 4+ 0 and 8 —n//— 0, then the function ,*
assumes the prescribed boundary values

V=V, 0=0), $*=V, @==n/l)

In the same manner we find that the expressions 0¢* /36 and o%,* /30 satisfy
the boundary conditions specified in systems (2. 1) and (2. 3), respectively (differentia-
tion with respect to @ of the series g* and ¥,* underthesummationsign isjustified
by the fact that the resulting series in partial derivatives converge unfformiy in 6
for 0esie,n/l—e],e>0. _

We shall show now that ¥*,¥,* and ¥,*) given by (2, 4) satisfy the differential
equations in systems (2. 1), (2.2) and (2. 3), respectively. The series ,* (without
the additional term contfaning C,, which obviously satisfies the equation (A, — %)

¥,* = 0) can be written, with help of the Watson transformation, in the form of a
contour mtegral

in v (x — 10
Zz 18I0 1B === S-Yi‘-'-‘;:';(-’:—ﬂ——l E, (r %, Vo) dv + (3.4)

Ne==] L7

13 ¢ vsinvi0
m‘)—mr Byl V2) dv
1

¢ dz
I, (zu)V(z) + Iw(rx)S v (zx)V(z)-;,—

Syt

E;(rn, V)y=K, (rn)

The contour I, passes from the region Imv < 0 tothe region Im+v> 0 inter-
secting the interval (0, 1) and follows therays agv=ta(0<a<n/2) 3s
[v]|—oo,
In writing the expression (3.4) we used the estimate E, = O (v7*) with Rev

— -+ oo, The estimate can be obtained using the uympteﬁa(a.m As a result, the
integmnd functions in (3, 4) decrease exponentlally in v as |v|— o along 4 ,
for 8 & (0, n/ l) , Then, applying to ¢,* the differential operator (A, — «?) =
/ot + o/ ar 493/ 988 — o2, we can place it under the integral signs.
Remembering also that
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(8% or* + r2a [ dr — V2 — ¥ E (r, %, V) = -3V (r} (3.5)

we find

e K e e - - - v
(81 — %% Py Rrel Sin VIt v nrdi smvn ©

By (r) ' vsinv(n—10) gy — I3, (r) $ v sin v/0
N [

Since the integrand expressions are odd functions of v , we can deform tlle cont-
our - /, into the imaginary axis to find that the integrals vanish and (A;—»*) ¥,* = 0,
Q.E. D,

Simijlarly we can write the series for §* (as well as for ¥,* ) of (2,14) in the
form

1 ! Scosv(u—-lﬂ) E,(r w Ugdv +
v 1] 14

o0
1
-5 Fot Z'Fncosrcle:—z"l’o+",‘;‘r sin vr
n=}

! ¢ cosvi®
ni ) sinvn
&

E (r,o, Uydv

As a result, applying the operator (A, — 0?) to §* and taking into account
(3.5) and the fact that (A} — @3)Fo/2 = fo/ 2 = In"%"2 [U, (r) — U, ()], we
find the following expression for any § form the intexrval (0, n/ )

_ 1 : v, — 18
(By — 01 §* = =5 [Us (r) — U5 ()] — ,f:(r? S = :1(: e L avt

i

io0
W(r) ¢ cosvibd WU,y (r) cos v (n — [0)
nirt S sinve V=T Tne? ) simva OVt
s oo

ioe
il (r) cos vi6

nir? sinva
—io0

dv =4

since the integrand functions are odd in v, An oblique stroke intersecting the inte-
gral sign indicates that, during the integration along the imaginary axis, it stands for
its principal Cauchy value,

in the same manner we can show that in the case of thesecond problem the express-
ions (2, 18) are solutions of systems (2, 15) —(2, 17).
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